extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×D4)⋊1C22 = C42.275C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):1C2^2 | 128,1678 |
(C4×D4)⋊2C22 = C42.277C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):2C2^2 | 128,1680 |
(C4×D4)⋊3C22 = C42.14C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):3C2^2 | 128,1773 |
(C4×D4)⋊4C22 = C42.18C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):4C2^2 | 128,1777 |
(C4×D4)⋊5C22 = C42.221D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):5C2^2 | 128,1832 |
(C4×D4)⋊6C22 = C42.225D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):6C2^2 | 128,1837 |
(C4×D4)⋊7C22 = C42.227D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):7C2^2 | 128,1841 |
(C4×D4)⋊8C22 = C42.232D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):8C2^2 | 128,1846 |
(C4×D4)⋊9C22 = C42.352C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):9C2^2 | 128,1850 |
(C4×D4)⋊10C22 = C42.356C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):10C2^2 | 128,1854 |
(C4×D4)⋊11C22 = C42.263D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):11C2^2 | 128,1937 |
(C4×D4)⋊12C22 = C42.269D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):12C2^2 | 128,1943 |
(C4×D4)⋊13C22 = C42.271D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):13C2^2 | 128,1945 |
(C4×D4)⋊14C22 = C42.275D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):14C2^2 | 128,1949 |
(C4×D4)⋊15C22 = C42.406C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):15C2^2 | 128,1952 |
(C4×D4)⋊16C22 = C42.410C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):16C2^2 | 128,1956 |
(C4×D4)⋊17C22 = D8⋊9D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):17C2^2 | 128,1996 |
(C4×D4)⋊18C22 = D8⋊10D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):18C2^2 | 128,1999 |
(C4×D4)⋊19C22 = D8⋊4D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):19C2^2 | 128,2004 |
(C4×D4)⋊20C22 = D8⋊5D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):20C2^2 | 128,2005 |
(C4×D4)⋊21C22 = D4×D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):21C2^2 | 128,2011 |
(C4×D4)⋊22C22 = D8⋊12D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):22C2^2 | 128,2012 |
(C4×D4)⋊23C22 = D4⋊4D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):23C2^2 | 128,2026 |
(C4×D4)⋊24C22 = C42.462C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):24C2^2 | 128,2029 |
(C4×D4)⋊25C22 = C42.41C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):25C2^2 | 128,2038 |
(C4×D4)⋊26C22 = C42.53C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):26C2^2 | 128,2050 |
(C4×D4)⋊27C22 = C42.54C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):27C2^2 | 128,2051 |
(C4×D4)⋊28C22 = C42.471C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):28C2^2 | 128,2054 |
(C4×D4)⋊29C22 = C42.474C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):29C2^2 | 128,2057 |
(C4×D4)⋊30C22 = C22.38C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):30C2^2 | 128,2181 |
(C4×D4)⋊31C22 = C22.64C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):31C2^2 | 128,2207 |
(C4×D4)⋊32C22 = C22.73C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 16 | | (C4xD4):32C2^2 | 128,2216 |
(C4×D4)⋊33C22 = C22.74C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):33C2^2 | 128,2217 |
(C4×D4)⋊34C22 = C22.76C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):34C2^2 | 128,2219 |
(C4×D4)⋊35C22 = C22.77C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):35C2^2 | 128,2220 |
(C4×D4)⋊36C22 = C22.78C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):36C2^2 | 128,2221 |
(C4×D4)⋊37C22 = C22.79C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 16 | | (C4xD4):37C2^2 | 128,2222 |
(C4×D4)⋊38C22 = C22.80C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):38C2^2 | 128,2223 |
(C4×D4)⋊39C22 = C22.81C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):39C2^2 | 128,2224 |
(C4×D4)⋊40C22 = C22.82C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):40C2^2 | 128,2225 |
(C4×D4)⋊41C22 = C22.83C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):41C2^2 | 128,2226 |
(C4×D4)⋊42C22 = C22.84C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):42C2^2 | 128,2227 |
(C4×D4)⋊43C22 = C4⋊2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):43C2^2 | 128,2228 |
(C4×D4)⋊44C22 = C22.87C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):44C2^2 | 128,2230 |
(C4×D4)⋊45C22 = C22.89C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):45C2^2 | 128,2232 |
(C4×D4)⋊46C22 = C22.94C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):46C2^2 | 128,2237 |
(C4×D4)⋊47C22 = C22.95C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):47C2^2 | 128,2238 |
(C4×D4)⋊48C22 = C22.97C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):48C2^2 | 128,2240 |
(C4×D4)⋊49C22 = C22.99C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):49C2^2 | 128,2242 |
(C4×D4)⋊50C22 = C22.102C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):50C2^2 | 128,2245 |
(C4×D4)⋊51C22 = C22.103C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):51C2^2 | 128,2246 |
(C4×D4)⋊52C22 = C22.108C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):52C2^2 | 128,2251 |
(C4×D4)⋊53C22 = C23.144C24 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):53C2^2 | 128,2252 |
(C4×D4)⋊54C22 = C22.110C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):54C2^2 | 128,2253 |
(C4×D4)⋊55C22 = C22.118C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):55C2^2 | 128,2261 |
(C4×D4)⋊56C22 = C42⋊C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 16 | | (C4xD4):56C2^2 | 128,2264 |
(C4×D4)⋊57C22 = C22.122C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):57C2^2 | 128,2265 |
(C4×D4)⋊58C22 = C22.123C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):58C2^2 | 128,2266 |
(C4×D4)⋊59C22 = C22.124C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):59C2^2 | 128,2267 |
(C4×D4)⋊60C22 = C22.125C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):60C2^2 | 128,2268 |
(C4×D4)⋊61C22 = C22.126C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):61C2^2 | 128,2269 |
(C4×D4)⋊62C22 = C22.128C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):62C2^2 | 128,2271 |
(C4×D4)⋊63C22 = C22.129C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):63C2^2 | 128,2272 |
(C4×D4)⋊64C22 = C22.130C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):64C2^2 | 128,2273 |
(C4×D4)⋊65C22 = C22.131C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):65C2^2 | 128,2274 |
(C4×D4)⋊66C22 = C22.132C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):66C2^2 | 128,2275 |
(C4×D4)⋊67C22 = C22.134C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):67C2^2 | 128,2277 |
(C4×D4)⋊68C22 = C22.135C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):68C2^2 | 128,2278 |
(C4×D4)⋊69C22 = C22.138C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):69C2^2 | 128,2281 |
(C4×D4)⋊70C22 = C22.140C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):70C2^2 | 128,2283 |
(C4×D4)⋊71C22 = C22.147C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):71C2^2 | 128,2290 |
(C4×D4)⋊72C22 = C22.149C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):72C2^2 | 128,2292 |
(C4×D4)⋊73C22 = C22.150C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):73C2^2 | 128,2293 |
(C4×D4)⋊74C22 = C22.151C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):74C2^2 | 128,2294 |
(C4×D4)⋊75C22 = C22.153C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):75C2^2 | 128,2296 |
(C4×D4)⋊76C22 = C22.155C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):76C2^2 | 128,2298 |
(C4×D4)⋊77C22 = C22.157C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4):77C2^2 | 128,2300 |
(C4×D4)⋊78C22 = C2×C4×D8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):78C2^2 | 128,1668 |
(C4×D4)⋊79C22 = C2×D8⋊C4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):79C2^2 | 128,1674 |
(C4×D4)⋊80C22 = C4×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):80C2^2 | 128,1676 |
(C4×D4)⋊81C22 = C2×C4⋊D8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):81C2^2 | 128,1761 |
(C4×D4)⋊82C22 = C2×D4.2D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):82C2^2 | 128,1763 |
(C4×D4)⋊83C22 = C42.444D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):83C2^2 | 128,1770 |
(C4×D4)⋊84C22 = C42.446D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):84C2^2 | 128,1772 |
(C4×D4)⋊85C22 = C2×C22.11C24 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):85C2^2 | 128,2157 |
(C4×D4)⋊86C22 = C2×C23.33C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):86C2^2 | 128,2159 |
(C4×D4)⋊87C22 = C22.14C25 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):87C2^2 | 128,2160 |
(C4×D4)⋊88C22 = C4×2+ 1+4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):88C2^2 | 128,2161 |
(C4×D4)⋊89C22 = C2×C22.19C24 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):89C2^2 | 128,2167 |
(C4×D4)⋊90C22 = C2×C23.36C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):90C2^2 | 128,2171 |
(C4×D4)⋊91C22 = C2×C22.26C24 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):91C2^2 | 128,2174 |
(C4×D4)⋊92C22 = C22.33C25 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):92C2^2 | 128,2176 |
(C4×D4)⋊93C22 = C2×C22.32C24 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):93C2^2 | 128,2182 |
(C4×D4)⋊94C22 = C2×C22.33C24 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):94C2^2 | 128,2183 |
(C4×D4)⋊95C22 = C2×C22.34C24 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):95C2^2 | 128,2184 |
(C4×D4)⋊96C22 = C2×C22.36C24 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):96C2^2 | 128,2186 |
(C4×D4)⋊97C22 = C22.44C25 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):97C2^2 | 128,2187 |
(C4×D4)⋊98C22 = C22.48C25 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):98C2^2 | 128,2191 |
(C4×D4)⋊99C22 = C22.49C25 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):99C2^2 | 128,2192 |
(C4×D4)⋊100C22 = C2×D42 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):100C2^2 | 128,2194 |
(C4×D4)⋊101C22 = C2×D4⋊5D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):101C2^2 | 128,2195 |
(C4×D4)⋊102C22 = C2×D4⋊6D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):102C2^2 | 128,2196 |
(C4×D4)⋊103C22 = C2×Q8⋊5D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):103C2^2 | 128,2197 |
(C4×D4)⋊104C22 = C2×Q8⋊6D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):104C2^2 | 128,2199 |
(C4×D4)⋊105C22 = D4×C4○D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):105C2^2 | 128,2200 |
(C4×D4)⋊106C22 = C2×C22.45C24 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):106C2^2 | 128,2201 |
(C4×D4)⋊107C22 = C2×C22.47C24 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):107C2^2 | 128,2203 |
(C4×D4)⋊108C22 = C2×C22.49C24 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):108C2^2 | 128,2205 |
(C4×D4)⋊109C22 = C2×C22.53C24 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):109C2^2 | 128,2211 |
(C4×D4)⋊110C22 = C22.70C25 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):110C2^2 | 128,2213 |
(C4×D4)⋊111C22 = C2×C4×C4○D4 | φ: trivial image | 64 | | (C4xD4):111C2^2 | 128,2156 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×D4).1C22 = C42.45D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).1C2^2 | 128,212 |
(C4×D4).2C22 = C42.373D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).2C2^2 | 128,214 |
(C4×D4).3C22 = C42.47D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).3C2^2 | 128,215 |
(C4×D4).4C22 = C42.400D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).4C2^2 | 128,216 |
(C4×D4).5C22 = C42.315D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).5C2^2 | 128,224 |
(C4×D4).6C22 = C42.305D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).6C2^2 | 128,226 |
(C4×D4).7C22 = C42.52D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).7C2^2 | 128,227 |
(C4×D4).8C22 = C42.53D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).8C2^2 | 128,228 |
(C4×D4).9C22 = C8⋊9D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).9C2^2 | 128,313 |
(C4×D4).10C22 = C8⋊15SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).10C2^2 | 128,315 |
(C4×D4).11C22 = D4⋊2M4(2) | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).11C2^2 | 128,318 |
(C4×D4).12C22 = Q8⋊2M4(2) | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).12C2^2 | 128,320 |
(C4×D4).13C22 = C8⋊6D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).13C2^2 | 128,321 |
(C4×D4).14C22 = C8⋊9SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).14C2^2 | 128,322 |
(C4×D4).15C22 = C8⋊M4(2) | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).15C2^2 | 128,324 |
(C4×D4).16C22 = C8⋊3M4(2) | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).16C2^2 | 128,326 |
(C4×D4).17C22 = D4⋊D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).17C2^2 | 128,351 |
(C4×D4).18C22 = Q8⋊D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).18C2^2 | 128,353 |
(C4×D4).19C22 = D4⋊SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).19C2^2 | 128,354 |
(C4×D4).20C22 = C42.185C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).20C2^2 | 128,356 |
(C4×D4).21C22 = D4⋊3D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).21C2^2 | 128,357 |
(C4×D4).22C22 = Q8⋊3D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).22C2^2 | 128,359 |
(C4×D4).23C22 = C42.189C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).23C2^2 | 128,360 |
(C4×D4).24C22 = D4⋊2SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).24C2^2 | 128,361 |
(C4×D4).25C22 = Q8⋊2SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).25C2^2 | 128,363 |
(C4×D4).26C22 = D4⋊Q16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).26C2^2 | 128,364 |
(C4×D4).27C22 = C42.195C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).27C2^2 | 128,366 |
(C4×D4).28C22 = D4.SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).28C2^2 | 128,367 |
(C4×D4).29C22 = D4.3Q16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).29C2^2 | 128,369 |
(C4×D4).30C22 = C42.199C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).30C2^2 | 128,370 |
(C4×D4).31C22 = D4.D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).31C2^2 | 128,371 |
(C4×D4).32C22 = Q8.D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).32C2^2 | 128,373 |
(C4×D4).33C22 = Q8⋊3SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).33C2^2 | 128,374 |
(C4×D4).34C22 = D4.5SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).34C2^2 | 128,375 |
(C4×D4).35C22 = D4⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).35C2^2 | 128,376 |
(C4×D4).36C22 = C42.207C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).36C2^2 | 128,378 |
(C4×D4).37C22 = D4.7D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).37C2^2 | 128,379 |
(C4×D4).38C22 = D4⋊4Q16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).38C2^2 | 128,381 |
(C4×D4).39C22 = C42.211C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).39C2^2 | 128,382 |
(C4×D4).40C22 = Q8⋊4SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).40C2^2 | 128,383 |
(C4×D4).41C22 = C42.213C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).41C2^2 | 128,384 |
(C4×D4).42C22 = D4⋊4SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).42C2^2 | 128,386 |
(C4×D4).43C22 = C8⋊D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).43C2^2 | 128,417 |
(C4×D4).44C22 = C8⋊2D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).44C2^2 | 128,419 |
(C4×D4).45C22 = C8.D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).45C2^2 | 128,421 |
(C4×D4).46C22 = C8⋊3SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).46C2^2 | 128,423 |
(C4×D4).47C22 = C8⋊4SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).47C2^2 | 128,425 |
(C4×D4).48C22 = C8.8SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).48C2^2 | 128,427 |
(C4×D4).49C22 = C42.248C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).49C2^2 | 128,429 |
(C4×D4).50C22 = C42.250C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).50C2^2 | 128,431 |
(C4×D4).51C22 = C42.252C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).51C2^2 | 128,433 |
(C4×D4).52C22 = C42.254C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).52C2^2 | 128,435 |
(C4×D4).53C22 = C42.265C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).53C2^2 | 128,1662 |
(C4×D4).54C22 = C42.266C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).54C2^2 | 128,1664 |
(C4×D4).55C22 = M4(2)⋊22D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).55C2^2 | 128,1665 |
(C4×D4).56C22 = M4(2)⋊23D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).56C2^2 | 128,1667 |
(C4×D4).57C22 = C42.276C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).57C2^2 | 128,1679 |
(C4×D4).58C22 = C42.278C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).58C2^2 | 128,1681 |
(C4×D4).59C22 = C42.280C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).59C2^2 | 128,1683 |
(C4×D4).60C22 = C42.281C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).60C2^2 | 128,1684 |
(C4×D4).61C22 = C42.292C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).61C2^2 | 128,1699 |
(C4×D4).62C22 = C42.293C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).62C2^2 | 128,1700 |
(C4×D4).63C22 = C42.299C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).63C2^2 | 128,1710 |
(C4×D4).64C22 = C42.300C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).64C2^2 | 128,1712 |
(C4×D4).65C22 = C42.308C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).65C2^2 | 128,1725 |
(C4×D4).66C22 = C42.310C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).66C2^2 | 128,1727 |
(C4×D4).67C22 = C42.15C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).67C2^2 | 128,1774 |
(C4×D4).68C22 = C42.19C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).68C2^2 | 128,1778 |
(C4×D4).69C22 = C42.20C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).69C2^2 | 128,1813 |
(C4×D4).70C22 = C42.22C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).70C2^2 | 128,1815 |
(C4×D4).71C22 = C42.23C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).71C2^2 | 128,1816 |
(C4×D4).72C22 = C42.384D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).72C2^2 | 128,1834 |
(C4×D4).73C22 = C42.223D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).73C2^2 | 128,1835 |
(C4×D4).74C22 = C42.450D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).74C2^2 | 128,1838 |
(C4×D4).75C22 = C42.226D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).75C2^2 | 128,1840 |
(C4×D4).76C22 = C42.229D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).76C2^2 | 128,1843 |
(C4×D4).77C22 = C42.230D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).77C2^2 | 128,1844 |
(C4×D4).78C22 = C42.233D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).78C2^2 | 128,1847 |
(C4×D4).79C22 = C42.235D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).79C2^2 | 128,1849 |
(C4×D4).80C22 = C42.353C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).80C2^2 | 128,1851 |
(C4×D4).81C22 = C42.354C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).81C2^2 | 128,1852 |
(C4×D4).82C22 = C42.355C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).82C2^2 | 128,1853 |
(C4×D4).83C22 = C42.357C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).83C2^2 | 128,1855 |
(C4×D4).84C22 = C42.358C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).84C2^2 | 128,1856 |
(C4×D4).85C22 = C42.359C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).85C2^2 | 128,1857 |
(C4×D4).86C22 = C42.360C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).86C2^2 | 128,1858 |
(C4×D4).87C22 = C42.365D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).87C2^2 | 128,1899 |
(C4×D4).88C22 = C42.308D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).88C2^2 | 128,1900 |
(C4×D4).89C22 = C42.366D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).89C2^2 | 128,1901 |
(C4×D4).90C22 = C42.255D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).90C2^2 | 128,1903 |
(C4×D4).91C22 = C42.256D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).91C2^2 | 128,1904 |
(C4×D4).92C22 = C42.385C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).92C2^2 | 128,1905 |
(C4×D4).93C22 = C42.386C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).93C2^2 | 128,1906 |
(C4×D4).94C22 = C42.387C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).94C2^2 | 128,1907 |
(C4×D4).95C22 = C42.388C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).95C2^2 | 128,1908 |
(C4×D4).96C22 = C42.390C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).96C2^2 | 128,1910 |
(C4×D4).97C22 = C42.391C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).97C2^2 | 128,1911 |
(C4×D4).98C22 = C42.257D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).98C2^2 | 128,1912 |
(C4×D4).99C22 = C42.258D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).99C2^2 | 128,1913 |
(C4×D4).100C22 = C42.259D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).100C2^2 | 128,1914 |
(C4×D4).101C22 = C42.260D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).101C2^2 | 128,1915 |
(C4×D4).102C22 = C42.261D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).102C2^2 | 128,1916 |
(C4×D4).103C22 = C42.264D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).103C2^2 | 128,1938 |
(C4×D4).104C22 = C42.265D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).104C2^2 | 128,1939 |
(C4×D4).105C22 = C42.270D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).105C2^2 | 128,1944 |
(C4×D4).106C22 = C42.272D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).106C2^2 | 128,1946 |
(C4×D4).107C22 = C42.276D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).107C2^2 | 128,1950 |
(C4×D4).108C22 = C42.277D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).108C2^2 | 128,1951 |
(C4×D4).109C22 = C42.407C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).109C2^2 | 128,1953 |
(C4×D4).110C22 = C42.411C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).110C2^2 | 128,1957 |
(C4×D4).111C22 = C42.278D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).111C2^2 | 128,1958 |
(C4×D4).112C22 = C42.279D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).112C2^2 | 128,1959 |
(C4×D4).113C22 = C42.280D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).113C2^2 | 128,1960 |
(C4×D4).114C22 = C42.284D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).114C2^2 | 128,1964 |
(C4×D4).115C22 = C42.285D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).115C2^2 | 128,1965 |
(C4×D4).116C22 = C42.286D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).116C2^2 | 128,1966 |
(C4×D4).117C22 = C42.287D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).117C2^2 | 128,1967 |
(C4×D4).118C22 = C42.290D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).118C2^2 | 128,1970 |
(C4×D4).119C22 = C42.291D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).119C2^2 | 128,1971 |
(C4×D4).120C22 = C42.292D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).120C2^2 | 128,1972 |
(C4×D4).121C22 = C42.423C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).121C2^2 | 128,1973 |
(C4×D4).122C22 = C42.425C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).122C2^2 | 128,1975 |
(C4×D4).123C22 = C42.426C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).123C2^2 | 128,1976 |
(C4×D4).124C22 = C42.293D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).124C2^2 | 128,1977 |
(C4×D4).125C22 = C42.294D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).125C2^2 | 128,1978 |
(C4×D4).126C22 = C42.295D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).126C2^2 | 128,1979 |
(C4×D4).127C22 = C42.296D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).127C2^2 | 128,1980 |
(C4×D4).128C22 = C42.298D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).128C2^2 | 128,1982 |
(C4×D4).129C22 = C42.299D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).129C2^2 | 128,1983 |
(C4×D4).130C22 = C42.300D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).130C2^2 | 128,1984 |
(C4×D4).131C22 = C42.301D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).131C2^2 | 128,1985 |
(C4×D4).132C22 = C42.302D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).132C2^2 | 128,1986 |
(C4×D4).133C22 = C42.304D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).133C2^2 | 128,1988 |
(C4×D4).134C22 = C4.2- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).134C2^2 | 128,1989 |
(C4×D4).135C22 = C42.25C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).135C2^2 | 128,1990 |
(C4×D4).136C22 = C42.26C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).136C2^2 | 128,1991 |
(C4×D4).137C22 = C42.27C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).137C2^2 | 128,1992 |
(C4×D4).138C22 = C42.29C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).138C2^2 | 128,1994 |
(C4×D4).139C22 = C42.30C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).139C2^2 | 128,1995 |
(C4×D4).140C22 = SD16⋊D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).140C2^2 | 128,1997 |
(C4×D4).141C22 = SD16⋊6D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).141C2^2 | 128,1998 |
(C4×D4).142C22 = SD16⋊7D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).142C2^2 | 128,2000 |
(C4×D4).143C22 = SD16⋊8D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).143C2^2 | 128,2001 |
(C4×D4).144C22 = Q16⋊9D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).144C2^2 | 128,2002 |
(C4×D4).145C22 = Q16⋊10D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).145C2^2 | 128,2003 |
(C4×D4).146C22 = SD16⋊1D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).146C2^2 | 128,2006 |
(C4×D4).147C22 = SD16⋊2D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).147C2^2 | 128,2007 |
(C4×D4).148C22 = SD16⋊3D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).148C2^2 | 128,2008 |
(C4×D4).149C22 = Q16⋊4D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).149C2^2 | 128,2009 |
(C4×D4).150C22 = Q16⋊5D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).150C2^2 | 128,2010 |
(C4×D4).151C22 = D8⋊13D4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).151C2^2 | 128,2015 |
(C4×D4).152C22 = C42.42C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).152C2^2 | 128,2039 |
(C4×D4).153C22 = C42.43C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).153C2^2 | 128,2040 |
(C4×D4).154C22 = C42.44C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).154C2^2 | 128,2041 |
(C4×D4).155C22 = C42.45C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).155C2^2 | 128,2042 |
(C4×D4).156C22 = C42.46C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).156C2^2 | 128,2043 |
(C4×D4).157C22 = C42.47C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).157C2^2 | 128,2044 |
(C4×D4).158C22 = C42.48C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).158C2^2 | 128,2045 |
(C4×D4).159C22 = C42.49C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).159C2^2 | 128,2046 |
(C4×D4).160C22 = C42.50C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).160C2^2 | 128,2047 |
(C4×D4).161C22 = C42.51C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).161C2^2 | 128,2048 |
(C4×D4).162C22 = C42.52C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).162C2^2 | 128,2049 |
(C4×D4).163C22 = C42.55C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).163C2^2 | 128,2052 |
(C4×D4).164C22 = C42.56C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).164C2^2 | 128,2053 |
(C4×D4).165C22 = C42.472C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).165C2^2 | 128,2055 |
(C4×D4).166C22 = C42.473C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).166C2^2 | 128,2056 |
(C4×D4).167C22 = C42.475C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).167C2^2 | 128,2058 |
(C4×D4).168C22 = C42.476C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).168C2^2 | 128,2059 |
(C4×D4).169C22 = C42.477C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).169C2^2 | 128,2060 |
(C4×D4).170C22 = C42.478C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).170C2^2 | 128,2061 |
(C4×D4).171C22 = C42.479C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).171C2^2 | 128,2062 |
(C4×D4).172C22 = C42.480C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).172C2^2 | 128,2063 |
(C4×D4).173C22 = C42.481C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).173C2^2 | 128,2064 |
(C4×D4).174C22 = C42.482C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).174C2^2 | 128,2065 |
(C4×D4).175C22 = C42.57C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).175C2^2 | 128,2075 |
(C4×D4).176C22 = C42.58C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).176C2^2 | 128,2076 |
(C4×D4).177C22 = C42.59C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).177C2^2 | 128,2077 |
(C4×D4).178C22 = C42.60C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).178C2^2 | 128,2078 |
(C4×D4).179C22 = C42.61C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).179C2^2 | 128,2079 |
(C4×D4).180C22 = C42.62C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).180C2^2 | 128,2080 |
(C4×D4).181C22 = C42.63C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).181C2^2 | 128,2081 |
(C4×D4).182C22 = C42.64C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).182C2^2 | 128,2082 |
(C4×D4).183C22 = C42.492C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).183C2^2 | 128,2083 |
(C4×D4).184C22 = C42.493C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).184C2^2 | 128,2084 |
(C4×D4).185C22 = C42.494C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).185C2^2 | 128,2085 |
(C4×D4).186C22 = C42.495C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).186C2^2 | 128,2086 |
(C4×D4).187C22 = C42.496C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).187C2^2 | 128,2087 |
(C4×D4).188C22 = C42.497C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).188C2^2 | 128,2088 |
(C4×D4).189C22 = C42.498C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).189C2^2 | 128,2089 |
(C4×D4).190C22 = Q8⋊4D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).190C2^2 | 128,2090 |
(C4×D4).191C22 = Q8⋊7SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).191C2^2 | 128,2091 |
(C4×D4).192C22 = C42.501C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).192C2^2 | 128,2092 |
(C4×D4).193C22 = C42.502C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).193C2^2 | 128,2093 |
(C4×D4).194C22 = Q8⋊8SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).194C2^2 | 128,2094 |
(C4×D4).195C22 = C42.505C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).195C2^2 | 128,2096 |
(C4×D4).196C22 = C42.506C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).196C2^2 | 128,2097 |
(C4×D4).197C22 = C42.507C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).197C2^2 | 128,2098 |
(C4×D4).198C22 = C42.508C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).198C2^2 | 128,2099 |
(C4×D4).199C22 = C42.509C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).199C2^2 | 128,2100 |
(C4×D4).200C22 = C42.510C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).200C2^2 | 128,2101 |
(C4×D4).201C22 = C42.511C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).201C2^2 | 128,2102 |
(C4×D4).202C22 = C42.512C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).202C2^2 | 128,2103 |
(C4×D4).203C22 = C42.513C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).203C2^2 | 128,2104 |
(C4×D4).204C22 = C42.514C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).204C2^2 | 128,2105 |
(C4×D4).205C22 = C42.516C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).205C2^2 | 128,2107 |
(C4×D4).206C22 = C42.517C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).206C2^2 | 128,2108 |
(C4×D4).207C22 = C42.518C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).207C2^2 | 128,2109 |
(C4×D4).208C22 = Q8×D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).208C2^2 | 128,2110 |
(C4×D4).209C22 = Q8×SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).209C2^2 | 128,2111 |
(C4×D4).210C22 = D8⋊6Q8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).210C2^2 | 128,2112 |
(C4×D4).211C22 = SD16⋊4Q8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).211C2^2 | 128,2113 |
(C4×D4).212C22 = D8⋊4Q8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).212C2^2 | 128,2116 |
(C4×D4).213C22 = SD16⋊Q8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).213C2^2 | 128,2117 |
(C4×D4).214C22 = SD16⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).214C2^2 | 128,2118 |
(C4×D4).215C22 = SD16⋊3Q8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).215C2^2 | 128,2120 |
(C4×D4).216C22 = D8⋊5Q8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).216C2^2 | 128,2121 |
(C4×D4).217C22 = Q8⋊5D8 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).217C2^2 | 128,2123 |
(C4×D4).218C22 = Q8⋊9SD16 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).218C2^2 | 128,2124 |
(C4×D4).219C22 = C42.527C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).219C2^2 | 128,2125 |
(C4×D4).220C22 = C42.528C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).220C2^2 | 128,2126 |
(C4×D4).221C22 = C42.530C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).221C2^2 | 128,2128 |
(C4×D4).222C22 = C42.72C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).222C2^2 | 128,2129 |
(C4×D4).223C22 = C42.73C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).223C2^2 | 128,2130 |
(C4×D4).224C22 = C42.74C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).224C2^2 | 128,2131 |
(C4×D4).225C22 = C42.75C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).225C2^2 | 128,2132 |
(C4×D4).226C22 = C42.531C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).226C2^2 | 128,2133 |
(C4×D4).227C22 = C42.532C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).227C2^2 | 128,2134 |
(C4×D4).228C22 = C42.533C23 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).228C2^2 | 128,2135 |
(C4×D4).229C22 = C22.75C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).229C2^2 | 128,2218 |
(C4×D4).230C22 = C4⋊2- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).230C2^2 | 128,2229 |
(C4×D4).231C22 = C22.88C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).231C2^2 | 128,2231 |
(C4×D4).232C22 = C22.90C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).232C2^2 | 128,2233 |
(C4×D4).233C22 = C22.92C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).233C2^2 | 128,2235 |
(C4×D4).234C22 = C22.93C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).234C2^2 | 128,2236 |
(C4×D4).235C22 = C22.96C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).235C2^2 | 128,2239 |
(C4×D4).236C22 = C22.100C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).236C2^2 | 128,2243 |
(C4×D4).237C22 = C22.101C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).237C2^2 | 128,2244 |
(C4×D4).238C22 = C22.104C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).238C2^2 | 128,2247 |
(C4×D4).239C22 = C22.105C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).239C2^2 | 128,2248 |
(C4×D4).240C22 = C22.106C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).240C2^2 | 128,2249 |
(C4×D4).241C22 = C22.107C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).241C2^2 | 128,2250 |
(C4×D4).242C22 = C22.111C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).242C2^2 | 128,2254 |
(C4×D4).243C22 = C23.146C24 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).243C2^2 | 128,2255 |
(C4×D4).244C22 = C22.113C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).244C2^2 | 128,2256 |
(C4×D4).245C22 = C22.120C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).245C2^2 | 128,2263 |
(C4×D4).246C22 = C22.127C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 32 | | (C4xD4).246C2^2 | 128,2270 |
(C4×D4).247C22 = C22.133C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).247C2^2 | 128,2276 |
(C4×D4).248C22 = C22.136C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).248C2^2 | 128,2279 |
(C4×D4).249C22 = C22.137C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).249C2^2 | 128,2280 |
(C4×D4).250C22 = C22.139C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).250C2^2 | 128,2282 |
(C4×D4).251C22 = C22.141C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).251C2^2 | 128,2284 |
(C4×D4).252C22 = C22.142C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).252C2^2 | 128,2285 |
(C4×D4).253C22 = C22.143C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).253C2^2 | 128,2286 |
(C4×D4).254C22 = C22.144C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).254C2^2 | 128,2287 |
(C4×D4).255C22 = C22.146C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).255C2^2 | 128,2289 |
(C4×D4).256C22 = C22.148C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).256C2^2 | 128,2291 |
(C4×D4).257C22 = C22.152C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).257C2^2 | 128,2295 |
(C4×D4).258C22 = C22.154C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).258C2^2 | 128,2297 |
(C4×D4).259C22 = C22.156C25 | φ: C22/C1 → C22 ⊆ Out C4×D4 | 64 | | (C4xD4).259C2^2 | 128,2299 |
(C4×D4).260C22 = C2×D4⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).260C2^2 | 128,206 |
(C4×D4).261C22 = C42.455D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).261C2^2 | 128,208 |
(C4×D4).262C22 = C42.397D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).262C2^2 | 128,209 |
(C4×D4).263C22 = C42.398D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).263C2^2 | 128,210 |
(C4×D4).264C22 = D4⋊M4(2) | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).264C2^2 | 128,218 |
(C4×D4).265C22 = C42.374D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).265C2^2 | 128,220 |
(C4×D4).266C22 = D4⋊4M4(2) | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).266C2^2 | 128,221 |
(C4×D4).267C22 = D4⋊5M4(2) | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).267C2^2 | 128,222 |
(C4×D4).268C22 = C8×D8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).268C2^2 | 128,307 |
(C4×D4).269C22 = C8×SD16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).269C2^2 | 128,308 |
(C4×D4).270C22 = SD16⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).270C2^2 | 128,310 |
(C4×D4).271C22 = D8⋊5C8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).271C2^2 | 128,312 |
(C4×D4).272C22 = C8⋊12SD16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).272C2^2 | 128,314 |
(C4×D4).273C22 = D4.M4(2) | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).273C2^2 | 128,317 |
(C4×D4).274C22 = C8⋊8D8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).274C2^2 | 128,397 |
(C4×D4).275C22 = C8⋊7D8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).275C2^2 | 128,399 |
(C4×D4).276C22 = C8.28D8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).276C2^2 | 128,401 |
(C4×D4).277C22 = C8⋊11SD16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).277C2^2 | 128,403 |
(C4×D4).278C22 = C8⋊10SD16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).278C2^2 | 128,405 |
(C4×D4).279C22 = D4.1Q16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).279C2^2 | 128,407 |
(C4×D4).280C22 = D4.2SD16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).280C2^2 | 128,409 |
(C4×D4).281C22 = D4.3SD16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).281C2^2 | 128,411 |
(C4×D4).282C22 = D4.2D8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).282C2^2 | 128,413 |
(C4×D4).283C22 = D4.Q16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).283C2^2 | 128,415 |
(C4×D4).284C22 = C2×C8⋊9D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).284C2^2 | 128,1659 |
(C4×D4).285C22 = C2×C8⋊6D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).285C2^2 | 128,1660 |
(C4×D4).286C22 = C42.264C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).286C2^2 | 128,1661 |
(C4×D4).287C22 = C42.681C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).287C2^2 | 128,1663 |
(C4×D4).288C22 = C2×C4×SD16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).288C2^2 | 128,1669 |
(C4×D4).289C22 = C4×C4○D8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).289C2^2 | 128,1671 |
(C4×D4).290C22 = C2×SD16⋊C4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).290C2^2 | 128,1672 |
(C4×D4).291C22 = C42.383D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).291C2^2 | 128,1675 |
(C4×D4).292C22 = C4×C8.C22 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).292C2^2 | 128,1677 |
(C4×D4).293C22 = C42.290C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).293C2^2 | 128,1697 |
(C4×D4).294C22 = C42.291C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).294C2^2 | 128,1698 |
(C4×D4).295C22 = C42.294C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).295C2^2 | 128,1701 |
(C4×D4).296C22 = D4⋊6M4(2) | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).296C2^2 | 128,1702 |
(C4×D4).297C22 = Q8⋊6M4(2) | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).297C2^2 | 128,1703 |
(C4×D4).298C22 = C23⋊3M4(2) | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).298C2^2 | 128,1705 |
(C4×D4).299C22 = C42.693C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).299C2^2 | 128,1707 |
(C4×D4).300C22 = C42.297C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).300C2^2 | 128,1708 |
(C4×D4).301C22 = C42.298C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).301C2^2 | 128,1709 |
(C4×D4).302C22 = C42.694C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).302C2^2 | 128,1711 |
(C4×D4).303C22 = C42.301C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).303C2^2 | 128,1713 |
(C4×D4).304C22 = C42.698C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).304C2^2 | 128,1721 |
(C4×D4).305C22 = Q8⋊7M4(2) | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).305C2^2 | 128,1723 |
(C4×D4).306C22 = C42.307C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).306C2^2 | 128,1724 |
(C4×D4).307C22 = C42.309C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).307C2^2 | 128,1726 |
(C4×D4).308C22 = C2×D4.D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).308C2^2 | 128,1762 |
(C4×D4).309C22 = C42.443D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).309C2^2 | 128,1767 |
(C4×D4).310C22 = C42.211D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).310C2^2 | 128,1768 |
(C4×D4).311C22 = C42.445D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).311C2^2 | 128,1771 |
(C4×D4).312C22 = C2×D4⋊Q8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).312C2^2 | 128,1802 |
(C4×D4).313C22 = C2×D4⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).313C2^2 | 128,1803 |
(C4×D4).314C22 = C2×D4.Q8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).314C2^2 | 128,1804 |
(C4×D4).315C22 = C42.447D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).315C2^2 | 128,1808 |
(C4×D4).316C22 = C42.219D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).316C2^2 | 128,1809 |
(C4×D4).317C22 = C42.448D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).317C2^2 | 128,1811 |
(C4×D4).318C22 = C42.449D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).318C2^2 | 128,1812 |
(C4×D4).319C22 = C42.222D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).319C2^2 | 128,1833 |
(C4×D4).320C22 = C42.451D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).320C2^2 | 128,1839 |
(C4×D4).321C22 = C42.228D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).321C2^2 | 128,1842 |
(C4×D4).322C22 = C42.234D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).322C2^2 | 128,1848 |
(C4×D4).323C22 = D4×SD16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).323C2^2 | 128,2013 |
(C4×D4).324C22 = SD16⋊10D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).324C2^2 | 128,2014 |
(C4×D4).325C22 = SD16⋊11D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).325C2^2 | 128,2016 |
(C4×D4).326C22 = Q16⋊12D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).326C2^2 | 128,2017 |
(C4×D4).327C22 = D4×Q16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).327C2^2 | 128,2018 |
(C4×D4).328C22 = Q16⋊13D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).328C2^2 | 128,2019 |
(C4×D4).329C22 = D4⋊7SD16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).329C2^2 | 128,2027 |
(C4×D4).330C22 = C42.461C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).330C2^2 | 128,2028 |
(C4×D4).331C22 = D4⋊8SD16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).331C2^2 | 128,2030 |
(C4×D4).332C22 = D4⋊5Q16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).332C2^2 | 128,2031 |
(C4×D4).333C22 = C42.465C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).333C2^2 | 128,2032 |
(C4×D4).334C22 = C42.466C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).334C2^2 | 128,2033 |
(C4×D4).335C22 = C42.467C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).335C2^2 | 128,2034 |
(C4×D4).336C22 = C42.468C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).336C2^2 | 128,2035 |
(C4×D4).337C22 = C42.469C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).337C2^2 | 128,2036 |
(C4×D4).338C22 = C42.470C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).338C2^2 | 128,2037 |
(C4×D4).339C22 = D4⋊5D8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).339C2^2 | 128,2066 |
(C4×D4).340C22 = D4⋊9SD16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).340C2^2 | 128,2067 |
(C4×D4).341C22 = C42.485C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).341C2^2 | 128,2068 |
(C4×D4).342C22 = C42.486C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).342C2^2 | 128,2069 |
(C4×D4).343C22 = D4⋊6Q16 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).343C2^2 | 128,2070 |
(C4×D4).344C22 = C42.488C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).344C2^2 | 128,2071 |
(C4×D4).345C22 = C42.489C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).345C2^2 | 128,2072 |
(C4×D4).346C22 = C42.490C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).346C2^2 | 128,2073 |
(C4×D4).347C22 = C42.491C23 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).347C2^2 | 128,2074 |
(C4×D4).348C22 = C4×2- 1+4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).348C2^2 | 128,2162 |
(C4×D4).349C22 = C22.50C25 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).349C2^2 | 128,2193 |
(C4×D4).350C22 = C2×D4×Q8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).350C2^2 | 128,2198 |
(C4×D4).351C22 = C2×C22.46C24 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).351C2^2 | 128,2202 |
(C4×D4).352C22 = C2×D4⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).352C2^2 | 128,2204 |
(C4×D4).353C22 = C2×C22.50C24 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).353C2^2 | 128,2206 |
(C4×D4).354C22 = Q8×C4○D4 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).354C2^2 | 128,2210 |
(C4×D4).355C22 = C22.69C25 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).355C2^2 | 128,2212 |
(C4×D4).356C22 = C22.71C25 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).356C2^2 | 128,2214 |
(C4×D4).357C22 = C22.72C25 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).357C2^2 | 128,2215 |
(C4×D4).358C22 = C22.98C25 | φ: C22/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).358C2^2 | 128,2241 |
(C4×D4).359C22 = D4×C2×C8 | φ: trivial image | 64 | | (C4xD4).359C2^2 | 128,1658 |
(C4×D4).360C22 = D4×M4(2) | φ: trivial image | 32 | | (C4xD4).360C2^2 | 128,1666 |
(C4×D4).361C22 = C8×C4○D4 | φ: trivial image | 64 | | (C4xD4).361C2^2 | 128,1696 |
(C4×D4).362C22 = C42.691C23 | φ: trivial image | 32 | | (C4xD4).362C2^2 | 128,1704 |
(C4×D4).363C22 = D4⋊7M4(2) | φ: trivial image | 32 | | (C4xD4).363C2^2 | 128,1706 |
(C4×D4).364C22 = C42.697C23 | φ: trivial image | 64 | | (C4xD4).364C2^2 | 128,1720 |
(C4×D4).365C22 = D4⋊8M4(2) | φ: trivial image | 64 | | (C4xD4).365C2^2 | 128,1722 |